
QCIR-G14: A Non-Prenex Non-CNF Format for

Quantified Boolean Formulas

QBF Gallery 2014
http://qbf.satisfiability.org/gallery/

April 8, 2014

Contents

1 Introduction 2

2 Format Specification 2
2.1 Syntax . 2
2.2 Details . 3
2.3 Cleansed Form . 4

3 Examples 4
3.1 Formula in Prenex Form . 4
3.2 Formula in Non-Prenex Form . 5
3.3 Formula in Cleansed Form . 5

4 Beyond this Standard 5

5 Disclaimer 6

Acknowledgements

This document is based on an earlier version of the QCIR standard which was
initiated and kindly provided by Alexandra Goultiaeva and Will Klieber. Ex-
tensive feedback was provided by Lukasz Kaiser. Further, many comments given
by the participants of the QBF Workshop 2013 are included.

1

1 Introduction

This document defines the input format QCIRfor tools processing or producing
quantified Boolean formulas (QBF). The QCIRformat is based on the ISCAS-89
format. QCIRallows the representation of quantified circuits in prenex as well
as in non-prenex form. The QCIRformat is designed for being easy to use in
applications on the one hand and for being easy to be implemented in solvers
and related tools on the other hand. In order to satisfy both requirements, the
standard defines a general version providing much freedom to the user and a
version defining cleansed formulas which are easier to process. This document
first gives a concise definition of the structure of a QCIRformula followed by a
textual description of implementation details which cannot be covered in terms
of a grammar. Then restrictions to the cleansed format are introduced and
examples are provided. Finally, this document concludes with a list of features
to be included in the future.

2 Format Specification

2.1 Syntax

The following BNF grammar specifies the structure of a formula represented in
QCIR (Quantified CIRcuit).

qcir-file ::= format-id qblock-stmt output-stmt (gate-stmt nl)
∗

format-id ::= #QCIR-G14 [integer] nl

qblock-stmt ::= [free(var-list)nl] qblock-quant∗

qblock-quant ::= quant(var-list)nl

var-list ::= (var,)∗ var

lit-list ::= (lit,)∗ lit | ε
output-stmt ::= output(lit)nl

gate-stmt ::= gvar = ngate type(lit-list)

| gvar = xor(lit, lit)

| gvar = ite(lit, lit, lit)

| gvar = quant(var-list; lit)

quant ::= exists | forall
var ::= (A string of ASCII letters, digits, and underscores)

gvar ::= (A string of ASCII letters, digits, and underscores)

nl ::= newline

lit ::= var | -var | gvar | -gvar

ngate type ::= and | or

2

2.2 Details

Comments. For the sake of readability comments are not included in the BNF
description above. Any line that begins with the “#” character is a comment
line and may be ignored.

Output. Gate definitions not connected to the output shall be ignored. The
output must be a gate variable.

Separators. A QCIRfile may contain arbitrary many whitespaces, newlines
and tabs. They only serve for formatting the formula or seperating tokens and
may be ignored.

Gate Variables. Gate variables must be defined before they are used in the
definition of another gate. For example, if the gate definitions include “g1 =

and(v1, v2)” and “g2 = or(g1, v3)”, then the definition of g1 must come
before the definition of g2. Note that this requirement ensures that the circuit
graph is acyclic. Redefinition of gate variables is not allowed, i.e., a gate variable
may not occur in free or as quantified variable and it occurs exactly once on
the left-hand side of =.

Truth Constants. An and gate with zero inputs represents the constant
true. An or gate with zero inputs represents the constant false.

Quantifier Alternations. Unlike QDIMACS, consecutive quantifier blocks
of the same type are allowed. If non-gate variables are not explicitly quantified
or included in the free variables block, they are assumed to be free variables.

Case-Sensitivity. Keywords (e.g., “and”) are case-insensitive. Variable names
are case-sensitive.

If-then-else (ite). ite(x, y, z) is an if-then-else gate; it is logically equivalent
to (x ∧ y) ∨ (¬x ∧ z).

Format ID. If the format id is followed by a number n, this indicates that
the formula contains at most n different variables. If a variable is quantified
m times, it is counted m times for establishing n. If n is given, the formula is
assumed to be in cleansed form (see below).

Prenex Form. The format does not distinguish between formulas in prenex
form and non-prenex form. Tools which process formulas in prenex form only,
should use a prenexing tool in order to obtain the intended structure. A formula
in prenex form can be written down as follows (no quantifier gates are allowed)
where gate exp are and, or, ite, or xor expressions.

3

#QCIR-G14

quant(var, . . ., var)
...
quant(var, . . ., var)

output(lit)

var = gate exp
...
var = gate exp

Free Variables. Tools that do not support free variables may assume that
these variables are existentially quantified in the outermost quantifier block.

2.3 Cleansed Form

The cleansed form of a QCIR formula is a formula obeying the following syntac-
tical restrictions.

• A variable is only quantified once.

• A variable is either quantified or free.

• All free variables are declared in the free block.

• Quantifiers and logical operators are only spelled in lower case letters.

• Gate-variables which have a subformula with quantification are used at
most once.

• The format-id is followed by the number of variables n occurring in the
formula (input + gate variables). The names of variables are integers
smaller or equal to n.

• A cleansed formula does not contain xor gates.

• A cleansed formula does not contain ite gates.

A tool for transforming an arbitrary QCIRformula to its cleansed form will
be provided at the Gallery Webpage. Note that cleansed formulas might blow
up in size.

3 Examples

3.1 Formula in Prenex Form

A formula in prenex form looks as follows:

4

#QCIR-G14

forall(v1)

exists(v2, v3)

output(g3)

g1 = and(v1, v2)

g2 = and(-v1, -v2, v3)

g3 = or(g1, g2)

∀v1.∃v2.∃v3. (v1 ∧ v2)︸ ︷︷ ︸
g1

∨ (¬v1 ∧ ¬v2 ∧ v3)︸ ︷︷ ︸
g2︸ ︷︷ ︸

g3

As seen above, a file in QCIR format consists of four parts: (1) format identi-
fication, (2) a quantifier prefix, (3) identification of the circuit output, and (4)
gate definitions. In general, a formula in QCIR format has the following form:

3.2 Formula in Non-Prenex Form

A formula in non-prenex form looks as follows:

#QCIR-G14

forall(z)

output(g3)

g1 = and(x1, x2, z)

g2 = exists(x1, x2; g1)

g3 = or(z, g2)

∀z.

g3︷ ︸︸ ︷
z ∨ ∃x1.∃x2. (x1 ∧ x2 ∧ z)︸ ︷︷ ︸

g1︸ ︷︷ ︸
g2

3.3 Formula in Cleansed Form

The formula from the previous section has the following cleansed form:
#QCIR-G14 6

forall(3)

output(4)

5 = and(1, 2, 3)

6 = exists(1, 2; 5)

4 = or(3, 6)

4 Beyond this Standard

This is a collection of topics to be handled in later versions of this document.

5

• Format of proofs (e.g., resolution)

• Format of Skolem/Herbrand functions

• Output if formula has free variables

• More detailed return values

5 Disclaimer

This version of QCIRwas prepared in the context of QBF Gallery 2014 and uses
many parts of an internal version of the QCIRformat provided by Alexandra
Goultiaeva and Will Klieber. The version QCIRis published and maintained by
the organizers of the QBF Gallery 2014. Please send any comments or feedback
to qbfgallery2014@easychair.org.

6

